Perform a localized multitaper spectral analysis using spherical cap windows.
Usage
call SHMultiTaperSE (mtse
, sd
, cilm
, lmax
, tapers
, taper_order
, lmaxt
, k
, alpha
, lat
, lon
, taper_wt
, norm
, csphase
, exitstatus
)
Parameters
mtse
: output, real(dp), dimension (lmax
-lmaxt
+1)- The localized multitaper power spectrum estimate.
sd
: output, real(dp), dimension (lmax
-lmaxt
+1)- The standard error of the localized multitaper power spectral estimates.
cilm
: input, real(dp), dimension (2,lmax
+1,lmax
+1)- The spherical harmonic coefficients of the function to be localized.
lmax
: input, integer(int32)- The spherical harmonic bandwidth of
cilm
. tapers
: input, real(dp), dimension (lmaxt
+1,k
)- An array of the
k
windowing functions, arranged in columns, obtained from a call toSHReturnTapers
. Each window has non-zero coefficients for a single angular order that is specified in the arraytaper_order
. taper_order
: input, integer(int32), dimension (k
)- An array containing the angular orders of the spherical harmonic coefficients in each column of the array
tapers
. lmaxt
: input, integer(int32)- The spherical harmonic bandwidth of the windowing functions in the array
tapers
. k
: input, integer(int32)- The number of tapers to be utilized in performing the multitaper spectral analysis.
alpha
: input, optional, real(dp), dimension(3)- The Euler rotation angles used in rotating the windowing functions.
alpha(1) = 0
,alpha(2) = -(90-lat)*pi/180
,alpha(3) = -lon*pi/180
. Eitheralpha
orlat
andlon
can be specified, but not both. If none of these are specified, the window functions will not be rotated, and the spectral analysis will be centered at the north pole. lat
: input, optional, real(dp)- The latitude in degrees of the localized analysis. Either
alpha
orlat
andlon
can be specified but not both. If none of these are specified, the window functions will not be rotated, and the spectral analysis will be centered at the north pole. lon
: input, optional, real(dp)- The longitude in degrees of the localized analysis. Either
alpha
orlat
andlon
can be specified, but not both. If none of these are specified, the window functions will not be rotated, and the spectral analysis will be centered at the north pole. taper_wt
: input, optional, real(dp), dimension (k
)- The weights used in calculating the multitaper spectral estimates and standard error. Optimal values of the weights (for a known global power spectrum) can be obtained from the routine
SHMTVarOpt
. norm
: input, optional, integer(int32), default = 1- 1 (default) = 4-pi (geodesy) normalized harmonics; 2 = Schmidt semi-normalized harmonics; 3 = unnormalized harmonics; 4 = orthonormal harmonics.
csphase
: input, optional, integer(int32), default = 1- 1 (default) = do not apply the Condon-Shortley phase factor to the associated Legendre functions; -1 = append the Condon-Shortley phase factor of (-1)^m to the associated Legendre functions.
exitstatus
: output, optional, integer(int32)- If present, instead of executing a STOP when an error is encountered, the variable exitstatus will be returned describing the error. 0 = No errors; 1 = Improper dimensions of input array; 2 = Improper bounds for input variable; 3 = Error allocating memory; 4 = File IO error.
Description
SHMultiTaperSE
will perform a localized multitaper spectral analysis of an input function expressed in spherical harmonics. The maximum degree of the localized multitaper cross-power spectrum estimate is lmax-lmaxt
. The coefficients and angular orders of the windowing coefficients (tapers
and taper_order
) are obtained by a call to SHReturnTapers
. If lat
and lon
or alpha
is specified, the symmetry axis of the localizing windows will be rotated to these coordinates. Otherwise, the localized spectral analysis will be centered over the north pole.
If the optional array taper_wt
is specified, these weights will be used in calculating a weighted average of the individual k
tapered estimates mtse
and the corresponding standard error of the estimates sd
. If not present, the weights will all be assumed to be equal. When taper_wt
is not specified, the mutltitaper spectral estimate for a given degree will be calculated as the average obtained from the k
individual tapered estimates. The standard error of the multitaper estimate at degree l
is simply the population standard deviation, S = sqrt(sum (Si - mtse)^2 / (k-1))
, divided by sqrt(k)
. See Wieczorek and Simons (2007) for the relevant expressions when weighted estimates are used.
The employed spherical harmonic normalization and Condon-Shortley phase convention can be set by the optional arguments norm
and csphase
; if not set, the default is to use geodesy 4-pi normalized harmonics that exclude the Condon-Shortley phase of (-1)^m.
References
Wieczorek, M. A. and F. J. Simons, Minimum-variance multitaper spectral estimation on the sphere, J. Fourier Anal. Appl., 13, doi:10.1007/s00041-006-6904-1, 665-692, 2007.
See also
shmultitapercse, shreturntapers, shreturntapersm, shmtvaropt
Edit me