Compute the power spectrum of the magnetic field given the Schmidt seminormalized magnetic potential spherical harmonic coefficients.
Usage
call SHMagPowerSpectrum (cilm, a, r, lmax, spectrum, exitstatus)
Parameters
cilm: input, real(dp), dimension (2,lmax+1,lmax+1)- The Schmidt seminormalized spherical harmonic coefficients of the magnetic potential.
a: input, real(dp)- The reference radius of the magnetic potential spherical harmonic coefficients.
r: input, real(dp)- The radius to evaluate the magnetic field.
lmax: input, integer(int32)- The maximum spherical harmonic degree to calculate the power spectrum.
spectrum: output, real(dp), dimension (lmax+1)- The power spectrum of the magnetic field.
exitstatus: output, optional, integer(int32)- If present, instead of executing a STOP when an error is encountered, the variable exitstatus will be returned describing the error. 0 = No errors; 1 = Improper dimensions of input array; 2 = Improper bounds for input variable; 3 = Error allocating memory; 4 = File IO error.
Description
SHMagPowerSpectrum will calculate the power spectrum of the magnetic field at radius r given the magnetic potential Schmidt seminormalized spherical harmonic coefficients cilm evaluated at radius a. For a given degree l, this is explicitly calculated as (Lowes 1966):
S(l) = (l+1) (a/r)**(2l+4) Sum_{m=0}^l [ cilm(1, l+1, m+1)**2 + cilm(2, l+1, m+1)**2 ].
Reference
Lowes, F. J., Mean-square values on sphere of spherical harmonic fields, J. Geophys. Res., 71(8), 2179, 1966.